mice. It did not produce an increase in tumours in rats and does not appear to be genotoxic. IARC has classified aldrin and dieldrin in Group 3. It is considered that all the available information on aldrin and dieldrin taken together, including studies on humans, supports the view that, for practical purposes, these chemicals make very little contribution, if any, to the incidence of cancer in humans.

History of guideline development
The 1958 and 1963 WHO International Standards for Drinking-water did not refer to aldrin and dieldrin, but the 1971 International Standards suggested that pesticide residues that may occur in community water supplies make only a minimal contribution to the total daily intake of pesticides for the population served. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a health-based guideline value of 0.03 µg/litre was recommended for aldrin and dieldrin, based on the ADI recommended by JMPR in 1970 for aldrin and dieldrin residues separately or together and reaffirmed by toxicological data available in 1977. The 1993 Guidelines confirmed the health-based guideline value of 0.03 µg/litre for aldrin and dieldrin, based on the reaffirmation of the ADI recommended in 1977 by JMPR.

Assessment date
The risk assessment was conducted in 2003.

Principal references

12.5 Aluminium
Aluminium is the most abundant metallic element and constitutes about 8% of the Earth’s crust. Aluminium salts are widely used in water treatment as coagulants to reduce organic matter, colour, turbidity and microorganism levels. Such use may lead to increased concentrations of aluminium in finished water. Where residual concentrations are high, undesirable colour and turbidity may ensue. Concentrations of aluminium at which such problems may occur are highly dependent on a number of water quality parameters and operational factors at the water treatment plant. Aluminium intake from foods, particularly those containing aluminium compounds used as food additives, represents the major route of aluminium exposure for the general
public. The contribution of drinking-water to the total oral exposure to aluminium is usually less than 5% of the total intake.

In humans, aluminium and its compounds appear to be poorly absorbed, although the rate and extent of absorption have not been adequately studied for all sectors of the population. The degree of aluminium absorption depends on a number of parameters, such as the aluminium salt administered, pH (for aluminium speciation and solubility), bioavailability and dietary factors. These parameters should be taken into consideration during tissue dosimetry and response assessment. The use of currently available animal studies to develop a guideline value for aluminium is not appropriate because of these specific toxicokinetic/toxicodynamic considerations.

There is little indication that orally ingested aluminium is acutely toxic to humans despite the widespread occurrence of the element in foods, drinking-water and many antacid preparations. It has been hypothesized that aluminium exposure is a risk factor for the development or acceleration of onset of Alzheimer disease (AD) in humans. The 1997 WHO EHC document for aluminium concludes that:

On the whole, the positive relationship between aluminium in drinking-water and AD, which was demonstrated in several epidemiological studies, cannot be totally dismissed. However, strong reservations about inferring a causal relationship are warranted in view of the failure of these studies to account for demonstrated confounding factors and for total aluminium intake from all sources.

Taken together, the relative risks for AD from exposure to aluminium in drinking-water above 100 µg/litre, as determined in these studies, are low (less than 2.0). But, because the risk estimates are imprecise for a variety of methodological reasons, a population-attributable risk cannot be calculated with precision. Such imprecise predictions may, however, be useful in making decisions about the need to control exposures to aluminium in the general population.

Owing to the limitations of the animal data as a model for humans and the uncertainty surrounding the human data, a health-based guideline value for aluminium cannot be derived at this time.

The beneficial effects of the use of aluminium as a coagulant in water treatment are recognized. Taking this into account, and considering the health concerns about aluminium (i.e., its potential neurotoxicity), a practicable level is derived, based on optimization of the coagulation process in drinking-water plants using aluminium-based coagulants, to minimize aluminium levels in finished water.

Several approaches are available for minimizing residual aluminium concentrations in treated water. These include use of optimum pH in the coagulation process, avoiding excessive aluminium dosage, good mixing at the point of application of the coagulant, optimum paddle speeds for flocculation and efficient filtration of the aluminium floc. Under good operating conditions, concentrations of aluminium of 0.1 mg/litre or less are achievable in large water treatment facilities. Small facilities (e.g., those serving fewer than 10 000 people) might experience some difficulties in attaining this level, because the small size of the plant provides little buffering for fluctuation in operation; moreover, such facilities often have limited resources and limited
access to the expertise needed to solve specific operational problems. For these small facilities, 0.2 mg/litre or less is a practicable level for aluminium in finished water.

History of guideline development

The 1958, 1963 and 1971 WHO *International Standards for Drinking-water* did not refer to aluminium. In the first edition of the *Guidelines for Drinking-water Quality*, published in 1984, a guideline value of 0.2 mg/litre was established for aluminium, based on aesthetic considerations (as a compromise between the use of aluminium compounds in water treatment and discoloration that may be observed if levels above 0.1 mg/litre remain in the distributed water). No health-based guideline value was recommended in the 1993 Guidelines, but the Guidelines confirmed that a concentration of 0.2 mg/litre in drinking-water provides a compromise between the practical use of aluminium salts in water treatment and discoloration of distributed water. No health-based guideline value was derived for aluminium in the addendum to the Guidelines published in 1998, owing to the limitations of the animal data as a model for humans and the uncertainty surrounding the human data. However, taking the beneficial effects of the use of aluminium as a coagulant in water treatment into account and considering the health concerns about aluminium (i.e., its potential neurotoxicity), a practicable level was derived based on optimization of the coagulation process in drinking-water plants using aluminium-based coagulants, to minimize aluminium levels in finished water. Under good operating conditions, concentrations of aluminium of 0.1 mg/litre or less are achievable in large water treatment facilities. For small facilities, 0.2 mg/litre or less is a practicable level for aluminium in finished water.

Assessment date

The risk assessment was originally conducted in 1998. The Final Task Force Meeting in 2003 agreed that this risk assessment be brought forward to this edition of the *Guidelines for Drinking-water Quality*.

Principal reference

12.6 Ammonia

The term ammonia includes the non-ionized (NH₃) and ionized (NH₄⁺) species. Ammonia in the environment originates from metabolic, agricultural and industrial processes and from disinfection with chloramine. Natural levels in groundwater and surface water are usually below 0.2 mg/litre. Anaerobic groundwaters may contain up to 3 mg/litre. Intensive rearing of farm animals can give rise to much higher levels in surface water. Ammonia contamination can also arise from cement mortar pipe