Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft

Jeffrey R. Pierce
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada

Debra K. Weisenstein
Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA

Patricia Heckendorn
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Thomas Peter
Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

David W. Keith
Energy and Environmental Systems Group, University of Calgary, Calgary, Alberta, Canada

Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO$_2$ is limited because the slow conversion to H$_2$SO$_4$ tends to produce aerosol particles that are too large; SO$_2$ injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO$_2$ doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H$_2$SO$_4$, a condensible vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO$_2$ injection. Relative to SO$_2$ injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO$_2$.

Received 13 May 2010; accepted 28 July 2010; published 22 September 2010.

© 2011. American Geophysical Union. All Rights Reserved.