

AIR FORCE RESEARCH LABORATORY

ATMOSPHERIC CHEMISTRY FOR DISPERSION MODELING SUPPORT

Mike Henley
AFRL/MLQL
(850)283-6050
mike.henley@tyndall.af.mil

Introduction

- Relevance of Atmospheric Chemistry
 - OH and NO₃ radicals
 - Transformations of volatile organic compounds
 - Effects on chemical composition and concentration within a dispersion plume
- Importance of Laboratory Data
 - Accurate rate constants & reaction mechanisms
 - Improve or verify dispersion model
 - Improve detection schemes & source location

Air Team Helps Complete the Picture

Dispersion Modeling

Understanding Emissions

- How quickly does the concentration of "A" change due to reactions?
- What products does "A" form in these reactions?

Air Team Answers with expertise in:
Kinetics
Mechanisms
Day and Nighttime Chemistries

Applications

Modeling Support

CBW Defense

Counterproliferation

TIMs

Pertinent Radical Formation Reactions

OH Radical

$$O_3 + hv \longrightarrow O(^1D) + O_2$$

 $O(^1D) + H_2O \longrightarrow 2 OH$
 $RH + OH \longrightarrow R + H_2O$

NO₃ Radical

$$NO_2 + O_3 \longrightarrow NO_3 + O_2$$

 $NO_2 + NO_3 \longrightarrow N_2O_5$
 $RH + NO_3 \longrightarrow R + HNO_3$

Reactive Species Data

SPECIES	CONC (molc/cm³)	DAY/NIGHT	HC RATE (cm³/molc sec)
ОН	10 ⁶	day	10 ⁻¹⁰ to 10 ⁻¹⁵
NO ₃	10 ⁹	night	10 ⁻¹¹ to 10 ⁻¹⁹
O ₃	1012	both	10 ⁻¹⁵ to 10 ⁻²⁰

Air Team Products

Experts in...

- Determining OH and NO₃ reaction rate constants
- Identifying products and yield
- Elucidating reaction mechanisms

Hydroxyl Radical Rate Constant for Methyl Isobutyrate

Hydroxyl Radical Rate Constant for Cyclohexanol

Atmospheric Transformation Mechanism for MIB

Acetone, 97%

Methyl pyruvate, 3%

SUMMARY

Air Team has unique capabilities that:

Improve atmospheric dispersion model inputs

- Result in more accurate source location and identification
- Lead to more effective detection, response and decontamination

Completing the picture with Atmospheric Chemistry