Flood Facts and Information (June 2011)
What You Need to Know
NPPD's priority is to safely and reliably deliver electricity to our customers.
Learn more about the flood impacts on NPPD's operations and the precautions we are taking at our affected facilities:

- Power Plants (Cooper Nuclear Station, Brownville, NE)
- Power Lines, Facilities and Customer Service Centers
- How NPPD is 'Always There'

Learn what you can do

- Electrical Safety Tips
- Report an Outage
- Request a Disconnect/Reconnect

Media

- Photo Gallery
- CNS Flood Preparations
- CNS Flood Preparations (RAW)
- CNS Flood Preparations (small)
- Flood Preparations
- Flood Safety Tips

Related Links

- National Weather Service
- Federal Emergency Management Agency
- Nebraska Emergency Management Association
- Nebraska Department of Health and Human Services
- Missouri River Region
- Corps of Engineers Chart
- Missouri River USGS flow data in Nebraska
- NOAA Weather Service Data
- U.S Army Corps of Engineers (Facebook)

Power Plants

NPPD is taking measures necessary to protect the public's health and safety, while continuing to provide reliable electric service. One part is ensuring that NPPD's power generation plants across the state continue to operate as planned. Currently, all facilities are operating as normal.
Cooper Nuclear Station

At Cooper Nuclear Station, located south of Brownville, Nebraska, NPPD is working with local, state and regulatory officials to manage flood conditions at the site. This is an unprecedented event in the history of the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.

Cooper Nuclear Station continues to monitor rising river levels and actions have been developed as part of the plant’s emergency procedures. The Missouri River is expected to peak above normal levels at Cooper’s intake structure along the Missouri River. Actions have been developed as part of the plant’s emergency procedures and noted on the following chart:

Cooper’s Emergency Preparedness Plan (Flooding)

Cooper Nuclear Station has an emergency response plan that includes periodic role-plays of mock scenarios to practice that emergency response plan.

Cooper’s Design Features

Among the total 104 reactors in the U.S., Cooper is one of thirty-five Boiling Water Reactors (BWR). Cooper’s General Electric BWR-4 design is enhanced or modified to include:

- Steam-driven coolant pumps that operate independently from AC power.
- Station batteries are used for automatic operation.
- Procedures are in place to manually operate without DC power.
- All safety-related equipment is protected from tornadoes and external flooding.

Disclaimer: Cooper Nuclear Station measures the Missouri River’s water elevation at the mean sea level. Conversions to depth of river in feet are placed in parentheses behind these levels. It is also important to note that changing river conditions, mountain snowmelt, and precipitation, all play a role in the fluctuating river levels. Procedure-required steps are noted with an asterisk.

Station management continuously tracks the river’s level and anticipates precautionary measures for protecting plant equipment from flooding conditions.