
 
Why do tree death rates decrease with elevation in the Sierra Nevada? 

Because of the great spatial and temporal scales involved, most climatic change research relies on 
computer models to project possible changes in forest structure, composition, and dynamics. 
However, another approach is possible: analysis of forest characteristics along natural climatic 
gradients. Here we examine elevational gradients in the Sierra Nevada, California, and determine 
whether tree death rates are driven by elevational changes in (1) forest structure, (2) composition, 
or (3) causes of death. 

Permanent study plots 

Permanent study plots were established in the coniferous forest belts of Sequoia National Park 
and Yosemite National Park. The study plots ranged in elevation from lower treeline (1500 m) to 
upper treeline (3100 m) and ranged in size from 0.9- to 2.5 hectares. Plot locations were selected 
to be representative of major forest types along the elevational gradient -- namely, the ponderosa 
pine-mixed conifer, white fir-mixed conifer, Jeffrey pine, red fir, and western white pine forest 
types. 

In each plot, trees greater than or equal to 1.4 m in height were tagged, mapped, measured for 
diameter, and identified by species. Every five years the tagged trees were checked for mortality, 
diameters were re-measured, and new trees (reaching 1.4 m height) were incorporated. For each 
tree that died, we attempted to determine the possible causes of death. Overall, we have 
monitored more than 18,000 trees and have recorded 1,813 tree deaths. 

Plot Name Elevation 
(m) 

Size (ha) Annual 
Mortality 
Checks 

Average 
Annual Tree 

Density 
(#/ha) 

Species Comprising ≥5% of Stand 
Individuals

YOHO* 1500 1.000 1992-1997 2999 white fir (35%), incense cedar (32%), white 
pine (26%), ponderosa pine (5%)

BBB 1609 1.000 1993-1997 1213 incense cedar (54%), black oak (24%), white 
fir (12%), white pine (5%)

CCR 1622 1.125 1992-1997 1891 white fir (46%), incense cedar (30%), black 
oak (15%), white pine (5%)

Page 1 of 9Forest Demography

11/22/05http://tree.ltrr.arizona.edu/sngc/studies/fd.htm



* Plots in Yosemite National Park. All other plots are in Sequoia National Park. 
** Mortality checks were completed annually for these plots; mortality cause data were taken 1995-1997 

What are the project's results? 

CRCR* 1637 1.000 1994-1997 1753 white fir (44%), incense cedar (29%), white 
pine (18%), ponderosa pine (6%)

SUCR 2033 1.375 1984-1997 749 white fir (55%), incense cedar (20%), white 
pine (20%)

Swhite fir 2035 0.875 1984-1997 736 white fir (60%), incense cedar (28%), white 
pine (9%)

Swhite 
pine

2059 1.125 1984-1997 689 white fir (68%), white pine (22%), incense 
cedar (9%)

FJeffrey 
pine

2106 1.000 1984-1997 188 Jeffrey pine (79%), black oak (9%), white fir 
(8%)

LMCC 2128 1.865 1983-1997 318 white fir (69%), red fir (22%), giant sequoia 
(7%)

Lgiant 
sequoia

2170 2.500 1984-1997 434 white fir (76%), red fir (15%), white pine 
(6%)

Lwhite fir 2207 1.125 1988-1997** 398 white fir (75%), red fir (22%)
Lwhite 
pine

2210 1.000 1988-1997** 415 white fir (89%), white pine (7%)

LJeffrey 
pine

2405 1.000 1986-1997** 125 white fir (58%), Jeffrey pine (40%)

SFTR* 2484 1.000 1993-1997 1605 red fir (100%)
WT 2521 1.000 1994-1997 461 red fir (99%)
POFL* 2542 1.000 1995-1997 589 red fir (94%)
PG 2576 1.000 1993-1997 751 red fir (100%)
EI 2838 1.000 1984-1997 35 PIMO (79%), lodgepole pine (21%)
ES 2950 1.000 1984-1997** 60 PIMO (79%), lodgepole pine (10%), Jeffrey 

pine (10%)
ER 3097 1.125 1985-1997** 87 PIMO (98%)
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Overall tree death rate decreased significantly with elevation (r2 = 0.55; p < 0.001) 

Death rate relative to species composition 

Linear regression techniques were used to examine elevational trends in death rates within individual species (species inclusion required 50 
individuals in at least five plots). Species meeting these criteria were white fir, red fir, incense cedar, and white pine. 

Death rates decreased with elevation for three of the four species examined, though none of the slopes were significant at p < 0.05. When fit 
with a common slope, however, death rate decreases in these three species became significant (p < 0.05). Within two study plots white pine 
experienced a recent outbreak of white pine blister rust, an introduced pathogen. When outbreak years were excluded from analysis, death 
rates for white pine also decreased with elevation. 
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Tree death rates relative to elevation and species. 
ABCO = white fir, ABMA = red fir, CADE = incense cedar, and PILA = white pine. 

Death rate relative to population size structure 

Linear regression techniques were used to examine elevational trends in death rates relative to stem size (low elevation plots have 
proportionally more small trees, which tend to have higher death rates, than high elevation plots). Six diameter size classes of trees were 
established: 0-10, 10-20, 20-40, 40-60, 60-100, and >100 cm. 

Death rates decreased significantly with elevation in four of six size classes (p < 0.01 to p < 0.05). One high-elevation plot had only six trees 
in the 20-40 cm size class, and three of these were killed in a single avalanche. When this plot is removed from analysis, death rate decreases 
with elevation in the 20-40 cm size class, though non-significantly. 
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Tree death rates relative to elevation and tree size class. 
The size classes, in cm dbh, are a = 0-10, b = 10-20, c = 20-40, d = 40-60, e = 60-100, and f > or = 100. 
* p < 0.05; ** p < 0.01. 

Death rate relative to stand density 

To determine whether elevational changes in stand density drive death rates (low elevation stands being more dense than high elevation 
stands), we compared regressions of death rate on elevation alone and on stand density alone, and performed multiple regressions using both 
independent variables. 

Elevation and stand density were negatively correlated (r2 = 0.50; p < 0.001) suggesting that declining death rate with elevation might be due 
to declining stand densities. However, elevation alone explains more of the variance in tree death rate (r2 = 0.55; p < 0.001) than stand density 
alone (r2 = 0.18; p = 0.064). In multiple regression analysis, elevation was the stronger correlate of death rate (p=0.001 for elevation versus 
p=0.38 for stand density). 
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Death rate relative to factors associated with death 

To determine whether factors associated with tree death drive changes in death rates with elevation, we regressed death rate on elevation for 
three broad death factor categories: physical (uprooting, breaking, or being crushed), biotic (insects and pathogens), and unknown (most 
likely biotic). 

Death by physical factors increased slightly and non-significantly with elevation. In contrast, death associated with biotic factors decreased 
dramatically and significantly with elevation (r2 = 0.35; p < 0.01), as did death by unknown causes (r2 = 0.56; p < 0.001). 

 
Tree death rates relative to elevation and factors associated with death. 
Physical = tree uprooted, broken or was crushed. 
Biotic = tree was killed by insects or pathogens. 
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Uncertain = factors are most likely biotic, but not known with certainty. 

What are the implications for global warming? 

Declines in tree death rate with elevation are independent of changes in stand structure and composition and appear to be related to biotic 
(insects and pathogens) and unknown (most likely biotic) factors. Death rate declines may be driven by (1) reduced insect and pathogen 
activity with declining temperature at higher elevations, or (2) decreased length/severity of summer drought stress at higher elevations, hence 
lower susceptibility of trees to biotic causes of death. If these findings hold in other forest types and regions, they suggest a potential tree 
death rate increase in the face of global warming. 

Also involved were Linda S. Mutch, Adrian J. Das, Veronica G. Pile and Crystal I. Dickard of the Sequoia and Kings Canyon Field Station, 
and Peggy E. Moore of the USGS-BRD Yosemite Field Station. 
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