Topical issues: the electromagnetic environment

With our modern environment full of electromagnetic fields, from power transmission through to all forms of communication, the issues of how this affects our well-being are urgent.

Decline of bees, UK and worldwide

The Kompetenz initiative writes urgently to bee associations and beekeepers and explains about EM fields and bee colony collapse.

‘Honeybees will die out in Britain within a decade as virulent diseases and parasites spread through the nation’s hives, experts have warned. Whole colonies of bees are already being wiped out, with current methods of pest control unable to stop the problem.

‘The British Beekeepers Association (BBKA) said that if the crisis continued, honeybees would disappear completely from Britain by 2018, causing “calamitous” economic and environmental problems. … Last year, more than 11 per cent of all beehives inspected were wiped out, although losses were higher in some areas. In London, about 4,000 hives – two-thirds of the bee colonies in the capital – were estimated to have died over last winter. Of the eight colonies inspected so far this year, all have been wiped out. …’

Summary

Nature in the news and electromagnetic fields

Powerline evidence finally elicits a precautionary response from WHO.

Mobile phones and driving: more than a distraction?

Three routes to mobile phone addiction: psychological, sociological and physiological.
Massive and sudden declines have occurred in bee populations across the world in 2006-2007. Honeybees sustain agriculture through pollination so human food supply depends on their well-being.

Sudden and wholesale loss of bee colonies is described as Colony Collapse Disorder, but does not explain the reason. Primary reasons suggested, and sometimes in the past confirmed, include parasitic mites and consequent viruses. More recently pesticides, GM crop use and climate change have been suggested. However, as this page seeks to demonstrate, the electromagnetic environment is also crucially influential on honeybees, and is undergoing rapid and enormous change from human communications systems.

- **Infestations** such as the varroa mite can be tested for quickly and easily, and could confirm this as the current cause, but this has not been reported this time.

- **Pesticide** use has not been suddenly altered across the world (Switzerland, Poland, Italy, Germany, Greece, the UK and 24 states of the USA).

- **Agricultural methods** are more intensive: hives may be fumigated, electric fan-ventilated, permanently illuminated, bees fed on the wrong sugar solutions over winter, and grown to be over-sized.

- **GM crops** have been introduced, and not always as openly as some would like. These indeed can affect insect balance, but again this has not been evenly building across all the affected areas and would be more localised.

- **Climate change** is undoubtedly altering plant diversity and honeybees can be very specific, but this would suggest more gradual population density movements rather than disappearance.

The sudden declines are marked by bee disappearance rather than just hives full of
dead and diseased bees. The empty hives are not plundered by neighbouring colonies and other insects are not filling the pollination gap. This leaves two further possibilities:

- the hives are acting as a deterrent to bee return
- the bees are losing the ability to navigate or communicate.

Nothing in the bees, hives or honey is pointing to chemical toxicity or bio-predation. Since the studies lower down this page show that honeybees depend on natural electric and magnetic fields, and that they are frequency-specific in their communications, it is urgent that this line of enquiry is opened up.

Whilst the last bee species extinction in the UK occurred in 1988, there has been a steady decline in the bee population.

a timeline of bees in trouble and investigations

It’s a particularly bad time to cut funding on bee inspectors, but this is exactly what has happened in the UK: Funding cuts threaten bee health (2004).

Bees are not just nice to have around and make honey; they are crucial to crop pollination and a vital element in agriculture and food production. The global economic value of pollination may be as much as £50bn. In June 2006 it was reported that bee decline may hit food crops in Northern Ireland, and the UK in general. The cause appears to be mites and late flowering losing synchronicity with the bees’ nesting cycle. Farmers have been making efforts to restore habitat (eg field margins), and some decline appears to be restored.

Why this is not just interesting, but a critical issue: ‘Approximately 80% of all insect pollination is accomplished by honey bees. According to the University of California at Davis publication “Don’t Underestimate the Value of
Honey Bees,“ the remaining 20% of other insect pollinators are drastically reduced in number as well, making one wonder if the problem is the varroa mite or something else affecting the broader insect world.’ [Source: Suite 101]

Then in February of 2007 the bad news arrived of massive colony collapses across the US:

Mystery killer silencing honeybees. If the die-off continues, it would be disastrous for U.S. crop yields.

Honeybees Vanish, Leaving Keepers in Peril

Species under threat: Honey, who shrunk the bee population?

Bee mystery buzzes area

Bee Alert survey with hive signs and symptoms

initial survey results: analysis of viruses

In Austria, an enquiry was made via the beekeepers’ newspaper. 25 replied that they encountered problems after mast installations in the proximity:

- 37.5% reported an elevated bees aggressiveness
- 25.0% reported a tendency of bees to leave the hive
- 62.5% reported the collapse of the bee population.

No-one knows why

Pesticides and habitat?

Central to the argument of pesticide use has been Imidacloprid [more], a systemic nicotinoid agent that accumulated across harvest seasons and becomes available to pollinators. It attacks the nervous system, affecting learning and memory. See: Honey Bee Disappearances: Could Pesticides Play A Role?. Apparently after nicotinoids were withdrawn in France in 1994, bee colonies have still not yet fully recovered.
Whilst pesticides and loss of habitat appear mostly to blame, it isn't just farmers who can make a difference. Growing traditional plants in gardens would help, but we must remember that climate change is already visible, with the migration of many species (butterflies, insects, birds, fish etc.) all on the move, in a northerly direction. It may be worth considering therefore, the predictions about domestic gardens and the change to mediterranean plant varieties.

Another possibility is that agricultural methods, including bee-keeping is increasingly monocultural, reducing variety in both bee populations and the nectar they collect. See: A surprising decline of pollination services in USA. One factor in agricultural methods is bee size, and this does appear to make a difference in their resilient to mites. By pushing cell sizes up, commercial beekeepers develop bees up to 50% larger, that ostensibly are more productive. However, pushing this boundary has led to greater varroa problems that organic, natural-sized bees just do not suffer. [Opinions from an organic beekeeper.]

Some have pointed to GM crops, but this does not explain either the 20 year trend, the international aspect, or the suddenness of the 2006 USA event:

Are GM Crops Killing Bees? (Germany)
Collapsing colonies: are GM crops killing bees? Der Speigel, March 2007 (Germany)
Report from David Graves, an established New York beekeeper

Furthermore the bees have not just been dying in the hives, or being found dead, they have just been disappearing in their millions.

April 07, Palm Beach News reported: 'Troy Fore [executive secretary of the American Beekeeping Federation] and other bee industry figures and scientists said the phenomenon resembles many of the ways bees have always died, but for one notable exception: the empty hive is shunned by other bees and also by insect scavengers.
“I was very much a skeptic about this thing when I first heard of it,” said Danny Weaver, a Novosota, Texas, bee breeder who is president of Fore’s group.

‘He said his skepticism vanished when he obtained honeycomb from a collapsed hive and put it in an area heavily populated with bees and bee parasites, including wax moths.

“Nothing would go near it,” Weaver said. “Ordinarily, other bees would be robbing that honey, moths would be all over it. But nothing.”

Urgent investigation required

This observation must be tested further. A comb from a deserted hive and a comb from a thriving hive must be placed together where other species are plentiful.

- If the ‘affected’ comb is rejected but the ‘control’ is robbed, then this indicates the issue is embedded in the comb, not with the bees.
- If the comb and honey are then separated, each could similarly be tested for its influence on bees.
- If neither comb attracts other than opportunistic attention, then either the environment is disturbing normal activity or the bees and moths are being affected by something in the environment around the combs.
- The combs could then be tested separately to determine if one is itself influencing the environment of the other.

Since this is easily repeatable in many sites, it would quickly focus attention where it is due: comb, honey, pollinators or surrounding environment. (See below on bees, EM fields and their sense of smell.)

A man-made electromagnetic environment?
One trend that also causes concern is the electromagnetic environment. Ironically, power line pylons provide agricultural margins that are a haven for bees. In the US, it has been proposed that utilities do not mow the power line strips in order to halt the US decline in bees. Studies by Ulrich Warnke on bee behaviour in low frequency fields have, however shown suppressed metabolic rates in bees, and a paper by J O Husing, ‘Biene und Elektrizität’ in Imkerfreund (Beekeeper Friend) in 1965 noted effects of low frequencies on bee behaviour patterns. See also Bee World, 1976: Effects of Electric Charges on Honeybees.

There has been a deal of research on other insects, some relating to dimensional aspects on insect antennae. T Jaski noted in 1960 (‘Radio waves and life’, Radio Electronics, 31. pp. 43), that orientational reactions were observed in large ants when exposed to a SHF field of 10,000 MHz. They oriented their antennas along this electric lines of force and lost their ability to communicate the location of food to others. It was noted that the antenna length of the ants used in these experiments was almost a quarter of the wavelength to which they were exposed.

High electric fields present a greater problem in conductive hives (Bidokas et al., 1988). But it may not be hives and electrical fields that add to bee problems, so much as magnetic fields. Bees have a magnetoreception system sensitive down to 26nT at 10 to 60Hz, according to Kirschvink et al. (1997), decreasing rapidly with increasing frequency. Maybe living under power lines isn’t a completely good idea. Balmori 2006, ‘Effects of the Electromagnetic Radiation emitted by Mobile Telephony on Insects; Ecosystems’ recounts the effect of mobile phone antennas on insects more generally.

Are EM fields to blame? This is one environmental burden that matches the decline of bees, and the rapid recent rise in universal infrastructures may explain more.

Orientation and Navigation of Bees may be disturbed by man-made electric, magnetic
and electromagnetic fields: a six-point statement by Dr. rer. nat. Ulrich Warnke, University of Saarland

Bees that vanished when a house went wireless

There was only one snag with Ryan Ferguson’s new home, a three-storey Georgian house in Bath. When the 29-year-old digital sales director moved in three years ago, he found 30 nests of bees in his attic. ‘They got everywhere’, he says. ‘In the shower, the windows, the light fittings. It used to be quite dangerous. You would walk about at night without shoes on and they’d be all over the floor.’

He twice called in exterminators, but the bees just came back. Then, last summer, he installed a WiFi system. They left and never returned.

reported Independent on Sunday, 22/04/07

Explore the bee crisis more

As the months have gone by, the expected confirmations of mites or other parasites have not been forthcoming. Autopsies on bees show totally destroyed immune systems. Correlation with GM crops does not appear to be true, and whilst originally organic bees appeared immune, now it seems they are not. Beekeepers say that the stresses of breeding, transport, winter syrup nutrients are nothing new. Historical ‘dwindles’ or disappearances have always been due to known pathogens.

One beekeeper in the US has imported Australian bees and placed them in untreated, sterilised and irradiated abandoned hives. In the latter the bees thrived, suggesting a biological factor. However, with still so much uncertainty and no identified single pathogen, a combination of factors may well be the best explanation: the ‘perfect storm’ where all the wrong things come together at the same time with a catastrophic result.
Honeybees may be wiped out in 10 years,
Sunday Telegraph, 20 January 2008

Are British Columbia’s bee colonies the latest to die off?

Condemned cells, Daily Telegraph
Magazine, August 2007.

Environmental Emergency Updates: Part 1 – Spreading Honey Bee Disappearances – Nosema ceranae Not the Answer? (US, with global reports)

Australian bees in high demand (transcript and (as at May 2007) audio. Story: Australian bees shipped over to North America do not survive there: their immune systems are destroyed. Just the journey?

Millions of Bees Die – are Electromagnetic Signals to Blame?: ‘tired bees’ are also being reported in the UK

Flowers and fruit crops facing disaster as disease kills off bees (UK)

Hives left ‘like Marie Celeste’ as bees mysteriously vanish (Scotland)

More on bee decline in the UK and Europe
bumble bees in crisis (UK)

Why are Niagara’s bees dying? (Canada)

Bee deaths (German)

Honey Bee Crisis extends from US to Britain and Netherlands (UK and Netherlands)

Scientists ask: Where are all the bees? (USA)

Where are the birds and bees?, Milt Bowling, Canada

Devastating disease decimating hives (USA)

Honey bee die-off alarms beekeepers, crop growers and researchers (US)

Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands (Science 21 July 2006)

Wild bees and the flowers they pollinate are disappearing together, (Leeds University)
The Honey Bee Crisis of 2007. Escalating Honey Bee Decline Baffles Scientists (US)

Millions of bees dying, signalling woe for environment (Italy)

Honey bee die-off alarms beekeepers (North America)

Queens – Poor Mating and Laying – An update July 2006 (UK)

Wikipedia: a starter on Colony Collapse Disorder

and the Varroa mite

a Google search on Russian Varroa-resistant bees, introduced into the US in the 1990s. So is the decline not due to Varroa?

Bees are frequency-sensitive, like all living organisms:

It is interesting to reflect that many people complain of ‘the hum’, relating electromagnetic sources with an apparently acoustic phenomenon. There may indeed be more than one ‘hum’, but since bees are so sensitive to particular frequencies, this is a worthwhile route for research, especially if hives resonate in response to the now all-pervasive EM fields. GSM mobile phone systems produce a structural pulse frequency of 217Hz, DECT (cordless phones) 100Hz, TETRA 70.6Hz.

Honeybees can be trained to respond to very small changes in geomagnetic field intensity, Walker and Bitterman, 1989

Magnetic compass cues and visual pattern learning in honeybees, Frier et al., *Journal of Experimental Biology* 199, 1353–1361, 1996

Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields, *The Journal of*

How Electromagnetic Exposure can Influence Learning Processes. See 'Honey bees as possible bioindicator for non-thermal effects' (p.7)

The Bees Who Flew Too High, nuclear magnetic resonance, bees, quantum effects and the relationship with sunspots. Bees are tuned to the whole of nature, not just flowers.

Quantum Honeybees. Read the story of Barbara Shipman and the quantum field honeybee dance.

Stever H et al., (2005), *Verhaltensänderung unter elektromagnetischer Exposition*‘Behavioural Changes under Exposure to Electromagnetic Fields’

Harst W, Kuhn J, Stever H (2006), *Can Electromagnetic Exposure Cause a Change in Behaviour? Studying Possible Non-Thermal Influences on Honey Bees – An Approach within the Framework of Educational Informatics* (English)

Research summary:

- 2 beehives were unexposed and 2
beehives were exposed to a DECT phone.

- 25 bees were selected from each beehive and released 800 meters away.
- Unexposed beehives: 16 and 17 bees returned after respectively 28 and 32 minutes.
- DECT-exposed ones: 6 bees returned after 38 minutes to one hive. The other hive remained deserted.
- In the exposed beehives, there were 21 per cent fewer cells constructed in the hive frames after 9 days.

Bees rely on key enzyme for their sense of ‘smell’ in their antennal lobes:

It is interesting that the interpretation given in the February 2007 US news (above), is that the bees left in the hive being so diseased is due to immuno-suppression. If you take a look at our [health pages under EM Fields](http://www.hese-project.org/hese-uk/en/issues/emr.php?id=bees) you will see the evidence that electromagnetic fields (EMF) affect the behaviour of key enzymes that produce and regulate nitric oxide in living organisms, and why this is so important. If this is true of insects, then this avenue of research is also vital.

The Nitric Oxide System in Insects; ‘In the honeybee, the NO/cGMP system in the antennal lobes is implicated in the processing of adaptive mechanisms during chemosensory processing, and recent findings support a specific role of the NO system in memory formation.’

Fireflies seen in a new light. The secret of their flashes is a gas (nitric oxide turns down the use of oxygen in the mitochondria, allowing oxygen to power chemical lights).

Hypothesis: if man-made EM fields affect nitric oxide in fireflies, their communication
will be impaired and populations will decline.

Where have all the fireflies gone?
(2006)

Where have all the fireflies gone?
(2007)

Fireflies in decline as natural habitats are destroyed (2008) – is it just human light and pollution? Or human EM fields too?

Bibliography

‘The Influence of air ions with a unipolar charge on the motoric activity of bees’, Apiology

‘The Metabolism of Bees (Apis mellifica L.) under a 50 Hz High Voltage Field’, Journal for Applied Entomology

Balmori A, ‘Efectos de las radiaciones electromagnéticas de la telefonia móvil sobre insectos’, Ecosistemas, 2006/1, 1-11
‘Effects of the Electromagnetic Radiation emitted by Mobile Telephony on Insects’, Ecosystems

‘Effects of Electromagnetic Fields on Plants and Animals’

Eskov E K, Mironov G A (1990), 'Faktoren die die Abweichungen der Faser eines Phonrezeptors einer honigtragenden Biene in einem niederfrequenten Feld determinieren'. *Biofsika* 35 (4) 675-678
'Factors which determine the diversion of the fibre of phonereceptors in honey carrying bees in low frequency field'. *Biofsika* 35(4) 675-678 (Russian)

Eskov (1996), *Morphophysiologische Effekte eines ultrahochfrequenten Feldes bei Honigbienen*
Morphophysiological effects from ultrahigh frequency fields in honey bees (Russian)

Journal of Experimental Biology (1980), 86, 1-8

Kirschwink J L, Walker M M, Diebel C E, *Magnetite-based magnetoreception*,
Current Opinion in Neurobiology 2001, 11:462–467

Kuhn J, Stever H, 'Handy-Boom: eine Gefahr für die Imkerei?', ADIZ/db/IF 2/2001
'The Mobile Boom: A Danger for Beekeeping?'

'Effects of High Frequency Electromagnetic Fields on Bee Populations’, German Bee Journal

Kuhn J (2003), 'An Advanced Interdisciplinary Study in Theoretical Modelling of a Biological System – The Effect of High-Frequency Electromagnetic Fields on Honey

‘Some proportional dependencies of low frequency and radio frequency EMF effects on the regulation basis of cells’. *Proceedings of the 4. Unions symposium of the Academy of medical sciences of the UDSSR: Effects and biological action of radiofrequency-EMF*. Moscow, S. 70-73 (Russian)

‘Studies of the effect of lowfrequency electric fields on the individual development of some insect species’ (German)

‘Anomalies in individual insect development in electric fields of industrial frequencies’ (German)

‘About the role of mechanical reception of
electric fields by different insects'. Proceedings: Symposium about the mechanisms of biological processes effected by electromagnetic radiation. Puschkino, S.118 -121 (Russian)

‘Electromagnetic Fields and living Nature’, Nauka, Moscow S.288 (Russian)

Ruzicka F, Schäden durch Elektrosmog’, Bienenwelt, 10/2003, 34-35
‘Damage through Electrosmog’, World of Bees

see also bibliography of Prof. Hermann Stever

‘New Findings on the Electrophysiology of Bees’, Apiology

‘The Physical and Physiological Foundations of the Meteorosensitivity of Honey Bees caused by Electrically Charged Air’

‘Bees under High Voltage’, Review 75

More related bee sources

Honey Bee Quiet
Mobile Phones and Vanishing Bees, from Institute of Science in Society
Entomology professor and department head, May Berenbaum on the latest bee collapse
Mid-Atlantic Apiculture Research and Extension Consortium (MAAREC)
MAAREC Colony Collapse Disorder Working Group
European Community Biodiversity Clearing House Mechanism
Frequency of Bee Wings

More useful links:

The Big Bee Death from diagnose-funk, Zürich
Bee Mites Suppress Bee Immunity, Open Door For Viruses And Bacteria
The Plight of the Bumble Bee Affecting Plants Too (problem in Antigua too)
Mystery illness devastates honeybee colonies (14 Feb 07)
Bee and Flower Diversity Decline in Tandem (2006)
The Minnesota Honey Bee Battle MN
Supreme Court protects pollinators from pesticides
Useful PowerPoint on the issues; mites and pesticides

Pollinator Diversity Declining in Europe (since 1980s)

Homing instinct of bees surprises. Britain and Ireland have 25 native species of bumblebee. Five are currently listed in the UK Biodiversity Action Plan because of their precarious status. Many of the other bee species have undergone major range contractions. Habitat? Sudden housing changes??

Our Forgotten Pollinators: Protecting the Birds and Bees (1996) includes pesticides as a major factor, and Africanized bees

The Russian bee import that went wrong

Pollinators in decline