Dear Senator Clinton:

I read an article in the New York Time dated February 11, 2005, which I have copied for you below.

This article refers to "...Mr. Allwine said the six gases being used are collectively called perfluorocarbon tracers, which he said are colorless, odorless and entirely safe..." I disagree with this analysis.

There are going to release these gases over Manhattan - without telling the people that these gases maybe radioactive or other toxic gases. Please be aware that they are not as "safe" as stated. A review of the documented evidence "MSDS" reports shows that this testing on those of us in a populated area may not be the best of all possible ideas.

I know your husband has his office in New York and he will be exposed along with all the other people there or will he conveniently be gone during the tests? There must be a better way to test air currents than expose people to radioactive and other toxic gases. And what happens if the air conditions are not right and people get a higher dose than expected of one of these gases?

I sure hope that you will consider the actions being taken below by our government and investigate before you let my relatives and friends in Manhattan and surrounding areas be exposed unnecessarily to these gases.

Respectfully,

Rosalind Peterson
Post Office Box 499
Redwood Valley, California 95470
(707) 485-7520
E-Mail: info@californiaskywatch.com
Antiterror Test to Follow Winds and Determine Airborne Paths

Antonella Moin/The New York Times

Robert Michael Reynolds, left, and Jerry Allwine checked their wind sampling device on Thursday on top of the James A. Farley Post Office.

Jerry Allwine will probably receive some crooked stares next month as he traverses tall rooftops near Madison Square Garden and releases mysterious gases over Midtown Manhattan.

Not to worry. He is here to help.

Mr. Allwine, an engineer with the Pacific Northwest National Laboratory in Richland, Wash., is one of the directors on a team of about 50 scientists and emergency planners that will release a harmless gas sometime between March 7 and March 21 to study how air might flow through the city in the event of a terrorist attack or an accident involving toxic chemicals.

The team, which began planning the study this week with the City's Office of Emergency Management, will place 31 battery-powered air samplers on rooftops and sidewalks within a half-mile of the Garden. The resulting data will be used to develop better computer models for simulating the movements of airborne hazards.

The study is part of the Urban Dispersion Program, a $10 million project sponsored by the Homeland Security, Defense and Energy Departments that began in 2004 and will end in 2007.

On a day with gentle winds and no rain, the team will release six different gases into the air from separate locations, allowing the scientists to know where each one came from.

The team will track the gases using tracer samplers, which consist of a breadbox-size container sometimes mounted on a long pole or tripod. Inside the box is a battery-powered pump that fills about 20 plastic bags with air at predetermined sampling times. The team will hang 21 of the samplers from light poles; the 10 others will be set on rooftops. The team will also place wind vanes and other equipment on rooftops and sidewalks to measure the direction, speed and moisture of the air.

Mr. Allwine said the six gases being used are collectively called perfluorocarbon tracers, which he said are colorless, odorless and entirely safe. These gases are ideal for the project because they can be detected at very low levels, he said. The same gases have also been used in meteorological tests since the late 1960’s, he said, and more recently by utilities for detecting pipe leaks.

"Our aim is to begin to understand how atmospheric dispersion occurs," said Tony Fainberg, an official at the Directorate for Science and Technology, a division of the Department of Homeland Security. "And we believe that if you can figure out this complicated phenomena for New York City, with its deep urban canyons and its unpredictable air flows, then you can figure it out anywhere."

The results of the study, which is financed entirely with federal funds, will be shared with local emergency officials, said Jarrod N. Bernstein, a spokesman for the city's Office of Emergency Management. With that knowledge, emergency officials will have a better idea of how much of the city might be affected by a terrorist attack.

"For example, if a tanker truck carrying toxic gases crashes downtown or a terrorist releases anthrax in the air, you want to be able to start predicting the places that are downwind," Mr. Fainberg said. "With
computer modeling you can start to figure out whether to tell people to get off the streets immediately or to stay inside. You can also start figuring out where to send the ambulance, police and Fire Department.”

With better information, he added, "you can avoid having people running into the plume instead of away from it."

Paul J. Browne, a spokesman for the New York Police Department, said the study would be helpful but noted that the city already has extensive monitoring systems to catch problems before they occur. The national Biowatch system in the city consists of a number of machines, checked daily, that register biological hazards, he said. The city also has about 900 police sergeants who are assigned to carry pager-size devices that detect radioactivity, he added.

Aside from having samplers on rooftops and light poles, 12 of the federal team’s scientists will track the gases by walking the blocks near the Garden with pen-size samplers clipped to their lapels. Twenty-five students from the New York City College of Technology and Medgar Evers College, both in Brooklyn, will also help in setting up the sidewalk samplers and rooftop wind vanes, which will be completed in the first week of March.

Further field studies are scheduled for August 2005 and March 2006. Those tests will cover a larger area of New York City, and tracking instruments will be used inside certain buildings to monitor the exchange between outdoor and indoor air.