Potential neurological lesion after nasal instillation of TiO$_2$ nanoparticles in the anatase and rutile crystal phases

Jiangxue Wanga,b, Chunying Chena,b, Ying Liua,b, Fang Jiaoa,b, Wei Lia,b, Fang Laoa,b, Yufeng Lia,b, Bai Lia,b, Cuicui Gea,b, Guoqiang Zhoua,b, Yuxi Gaoa,b, Yuliang Zhaoa,b, and Zhifang Chaia,b

aLaboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Lab of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China

bNational Center for Nanoscience and Technology, Beijing 100190, PR China

Abstract

Nanoscale titanium dioxide (TiO$_2$) is massively produced and widely used in living environment, which hence make the potential risk to human health. Central nervous system (CNS) is the potential susceptible target of inhaled nanoparticles, but the studies on this aspect are limited so far. We report the accumulation and toxicity results in vivo of two crystalline phases of TiO$_2$ nanoparticles (80 nm, rutile and 155 nm, anatase; purity >99%). The female mice were intranasally instilled with 500 μg of TiO$_2$ nanoparticles suspension every other day for 30 days. Synchrotron radiation X-ray fluorescence analysis (SRXRF) and inductively coupled plasma mass spectrometry (ICP–MS) were used to determine the contents of titanium in murine brain. Then, the pathological examination of brain tissue, oxidative stress-mediated responses, and levels of neurochemicals in the brain of exposed mice were also analyzed. The obvious morphological changes of hippocampal neurons and increased GFAP-positive astrocytes in the CA4 region were observed, which were in good agreements with higher Ti contents in the hippocampus region. Oxidative stress occurred obviously in whole brain of exposed mice such as lipid peroxidation, protein oxidation and increased activities of catalase, as well as the excessive release of glutamic acid and nitric oxide. These findings indicate anatase TiO$_2$ nanoparticles exhibited higher concern on some tested biological effects. To summarize, results provided the preliminary evidence that nasal instilled TiO$_2$ nanoparticles could be translocated into the central nervous system and cause potential lesion of brain, and the hippocampus would be the main target within brain.

Keywords: TiO$_2$ nanomaterials; Neurotoxicology; Redox status; Protein oxidation; Lipid peroxidation; GFAP expression

Article Outline

1. Introduction
2. Materials and methods
 2.1. Materials
2.2. Animals
2.3. Nissl staining of murine brain sections
2.4. Scanning titanium distribution in brain sections
2.5. Determination of titanium content in whole brain and sub-brain regions
2.6. GFAP quantification
2.7. Immunohistochemistry method
2.8. Assay of enzymatic activities
2.9. Protein carbonyl assay
2.10. Determination of glutamic acid and NO
2.11. Statistical analysis

3. Results

4. Discussion

4.1. Olfactory translocation of TiO₂ particles to the central nervous system
4.2. Potential damage on the hippocampus of exposed mice
4.3. Oxidative damage in murine brain induced by TiO₂ particles
4.4. Influence on metabolism of neurochemicals

Conflict of interest

Acknowledgements

References